Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2232, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472194

RESUMEN

Site- and stereoselective C-H functionalization is highly challenging in the synthetic chemistry community. Although the chemistry of vinyl cations has been vigorously studied in C(sp3)-H functionalization reactions, the catalytic enantioselective C(sp3)-H functionalization based on vinyl cations, especially for an unactivated C(sp3)-H bond, has scarcely explored. Here, we report an asymmetric copper-catalyzed tandem diyne cyclization/unactivated C(sp3)-H insertion reaction via a kinetic resolution, affording both chiral polycyclic pyrroles and diynes with generally excellent enantioselectivities and excellent selectivity factors (up to 750). Importantly, this reaction demonstrates a metal-catalyzed enantioselective unactivated C(sp3)-H functionalization via vinyl cation and constitutes a kinetic resolution reaction based on diyne cyclization. Theoretical calculations further support the mechanism of vinyl cation-involved C(sp3)-H insertion reaction and elucidate the origin of enantioselectivity.

2.
Nat Commun ; 14(1): 7058, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923708

RESUMEN

The formal C-C bond insertion into aldehydes is an attractive methodology for the assembly of homologated carbonyl compounds. However, the homologation of aldehydes has been limited to diazo approach and the enantioselective reaction was rarely developed. Herein, we report an asymmetric formal C-C bond insertion into aldehydes through diyne cyclization strategy. In the presence of Cu(I)/SaBOX catalyst, this method leads to the efficient construction of versatile axially chiral naphthylpyrroles in moderate to excellent yields with good to excellent enantioselectivities. This protocol represents a rare example of asymmetric formal C-C bond insertion into aldehydes using non-diazo approach. The combined experimental and computational mechanistic studies reveal the reaction mechanism, origin of regioselectivity and stereoselectivity. Notably, the chiral phosphine ligand derived from synthesized axially chiral skeleton was proven to be applicable to asymmetric catalysis.

3.
Chem Sci ; 14(22): 5918-5924, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293635

RESUMEN

Catalytic enantioselective transformation of alkynes has become a powerful tool for the synthesis of axially chiral molecules. Most of these atroposelective reactions of alkynes rely on transition-metal catalysis, and the organocatalytic approaches are largely limited to special alkynes which act as the precursors of Michael acceptors. Herein, we disclose an organocatalytic atroposelective intramolecular (4 + 2) annulation of enals with ynamides. This method allows the efficient and highly atom-economical preparation of various axially chiral 7-aryl indolines in generally moderate to good yields with good to excellent enantioselectivities. Computational studies were carried out to elucidate the origins of regioselectivity and enantioselectivity. Furthermore, a chiral phosphine ligand derived from the synthesized axially chiral 7-aryl indoline was proven to be potentially applicable to asymmetric catalysis.

4.
Chem Sci ; 14(13): 3493-3500, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37006699

RESUMEN

The functionalization of etheric C-O bonds via C-O bond cleavage is an attractive strategy for the construction of C-C and C-X bonds in organic synthesis. However, these reactions mainly involve C(sp3)-O bond cleavage, and a catalyst-controlled highly enantioselective version is extremely challenging. Here, we report a copper-catalyzed asymmetric cascade cyclization via C(sp2)-O bond cleavage, allowing the divergent and atom-economic synthesis of a range of chromeno[3,4-c]pyrroles bearing a triaryl oxa-quaternary carbon stereocenter in high yields and enantioselectivities. Importantly, this protocol not only represents the first [1,2]-Stevens-type rearrangement via C(sp2)-O bond cleavage, but also constitutes the first example of [1,2]-aryl migration reactions via vinyl cations.

5.
Angew Chem Int Ed Engl ; 62(23): e202303670, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36996038

RESUMEN

Axially chiral biaryls widely exist in natural products and pharmaceuticals and are used as chiral ligands and catalysts in asymmetric synthesis. Compared to the well-established axially chiral 6-membered biaryl skeletons, examples of 5-membered biaryls have been quite scarce, and mono-substituted 3-arylpyrrole atropisomers have not been reported. Here, we disclose a copper-catalyzed atroposelective diyne cyclization for the construction of a range of axially chiral arylpyrrole biaryls in good to excellent yields with generally excellent enantioselectivities via oxidation and X-H insertion of vinyl cations. Importantly, this protocol not only represents the first synthesis of mono-substituted 3-arylpyrrole atropisomers, but also constitutes the first example of atroposelective diyne cyclization and the first atropisomer construction via vinyl cations. Theoretical calculations further support the mechanism of vinyl cation-involved cyclization and elucidate the origin of enantioselectivity.

6.
Angew Chem Int Ed Engl ; 62(10): e202216923, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639865

RESUMEN

[2,3]-Sigmatropic rearrangement reaction involving sulfonium ylide (Doyle-Kirmse reaction) generated from metal carbenes represents one of the powerful methods for the construction of C(sp3 )-S and C-C bonds. Although significant advances have been achieved, the asymmetric versions via the generation of sulfonium ylides from metal carbenes have been rarely reported to date, and they have so far been limited to diazo compounds as metal carbene precursors. Here, we describe a copper-catalyzed enantioselective Doyle-Kirmse reaction via azide-ynamide cyclization, leading to the practical and divergent assembly of an array of chiral [1,4]thiazino[3,2-b]indoles bearing a quaternary carbon stereocenter in generally moderate to excellent yields and excellent enantioselectivities. Importantly, this protocol represents a unique catalytic asymmetric Doyle-Kirmse reaction via a non-diazo approach and an unprecedented asymmetric [2,3]-sigmatropic rearrangement via α-imino metal carbenes.

7.
Angew Chem Int Ed Engl ; 61(28): e202204603, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35474275

RESUMEN

Medium-sized N,S-heterocycles have received tremendous interest due to their biological activities and potential medical applications. However, asymmetric synthesis of these compounds are extremely rare. Described herein is a catalyst-dependent [3,3]-sigmatropic rearrangement of sulfoxide-ynamides, enabling divergent and atom-economic synthesis of a series of valuable medium-sized N,S-heterocycles in moderate to good yields with broad substrate scope. Importantly, excellent enantioselectivities have been achieved via an unprecedented chirality-transfer. Moreover, theoretical calculations are employed to elucidate the origins of the catalyst-dependent stereospecific [3,3]-rearrangement.


Asunto(s)
Sulfóxidos , Catálisis , Ciclización , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA